
Model Driven Performance Measurement and

Assessment with MoDePeMART�

Marko Bošković1 and Wilhelm Hasselbring2

1 Athabasca University, Canada
marko.boskovic@athabascau.ca

2 Software Engineering Group, University of Kiel, Germany
wha@informatik.uni-kiel.de

Abstract. Software performance is one of important software Quality
of Service attributes. For this reason, several approaches integrate perfor-
mance prediction in Model Driven Engineering(MDE). However, MDE
still lacks a systematic approach for performance measurement and met-
rics assessment. This paper presents MoDePeMART, an approach for
Model Driven Performance Measurement and Assessment with Rela-
tional Traces. The approach suggests declarative specification of per-
formance metrics in a domain specific language and usage of relational
databases for storage and metric computation. The approach is eval-
uated with the implementation of a UML Profile for UML Class and
State diagrams and transformations from profile to a commercial rela-
tional database management system.

Keywords: Software Performance Measurement and Assessment, Model
Driven Engineering, Transformational and Reactive Systems.

1 Introduction

Increasing dependency on software systems, and consequences of their failures,
raises the question of software system trustworthiness [1]. In order to use soft-
ware systems as dependable systems, means for quantification, verification, and
contractual trust of those systems are being invented.

Means of quantification, verification, and contractual trust have to be done for
both, functional and non-functional requirements. Functional requirements define
functionality which is the objective of the system. Non-functional requirements
are constraints on system’s functionality offered by the system like security, pri-
vacy, reliability, timeliness etc [2]. They are characteristics of functionality design
and implementation, and often are called quality requirements [1].

Some of the non-functional properties of a service, of particular interest to
users, are often specified with the Quality of Service (QoS). Performance, is one
of the QoS attributes. In this paper, performance is defined as degree to which

� This work is supported by the German Research Foundation(DFG), grant GRK
1076/1.

A. Schürr and B. Selic (Eds.): MODELS 2009, LNCS 5795, pp. 62–76, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

MoDePeMART 63

objectives for timeliness are met [3]. It describes timing behavior of a software
system and it is measured with metrics like throughput and response time.

Significance of meeting non-functional requirements in trustworthy software
systems development, requires addressing them in the early design phases, in
parallel to functional requirements. For this reason, research in meting perfor-
mance requirements in Model Driven Engineering (MDE) was mostly dedicated
to performance predictions with analytical modeling and simulation, e.g. [4].
Performance measurement and empirical assessment of predicted values are left
to be done with profiling tools, or various techniques of manual insertions of code
for data collection and metrics computation. There is still not a model driven
approach for performance measurement and assessment.

This paper shows an approach for Model Driven Performance Measurement
and Assessment with Relational Traces) called MoDePeMART. The essence
of the approach is: (1) declarative specification of measurement points and met-
rics in a domain specific language, (2) automatic generation of code for data col-
lection, storage, and metrics computation, and (3) usage of Relational Database
Management Systems (RDBMS) for performance data storage and computation.

The paper is structured as follows. Section 2 explains the need for a model
driven approach for performance measurement and assessment. Measurement
and assessment with MoDePeMART is depicted in Section 3. The metamodel
which enables declarative specification of measurements and metrics compu-
tation is described in Section 4. The evaluation of the approach through the
implementation as a UML Profile for UML Class and State diagrams and trans-
formations to MySQL RDBMS is shown in Section 5. Section 6 contains the
comparative analysis of the approach with other approaches for performance
measurement and assessment. The limitations (assumptions) of the approach
are specified in Section 7. Section 8 gives an outlook of the approach and the
directions for the future work.

2 Motivation

MDE is a software engineering paradigm which suggests using models as the
primary artifacts of software development. It relies on two basic principles [5]:
abstraction and automation.

Abstraction suggests usage of Domain Specific Modeling Languages (DSMLs).
DSMLs are specialized modeling languages for solving classes of domain prob-
lems. Users of DSMLs are experts of that domain. Accordingly, DSMLs contain
concepts used by domain experts. With DSMLs domain experts specify solutions
to domain problems without being distracted by implementation details.

Automation handles implementation. It suggests transformations of DSML
models to implementations. This principle can be seen as one more level of
compilation.

In such a development process performance analyst faces several problems
when trying to measure and assess performance. First, the modeling language
used for software functionality development might not support constructs needed

64 M. Bošković and W. Hasselbring

Platform code
with probes

1. Design

4. Deployment

6. Testing

3, Transformation

(and Compilation)

A

B

SB

SA

SQL DML
Assessment Queries

6. Data collection
(measurements)

:Duration

MRT : SimpleAssessment

2. Instrumentation

7. Assessment

…
<<InstrumentedElement>> public a()
…

<<InstrumentedElement>>

SQL DDL Tables
Definition and DML
Initialization Code

5. Initialization

MDE MoDePeMART

Fig. 1. Performance Measurement and Assessment in MDE with MoDePeMART

for the performance measurement and assessment, such as routines for obtaining
time. Second, even if it does, a performance analyst is not an expert in that mod-
eling language, and it might be difficult for him to use it. Finally, data collection
and assessment at the platform level can be error-pronouns. In order to do it a
performance analyst would have to know how the domain specific constructs are
transformed to the platform. To remove these problems we suggest declarative
specification of metrics of interest in DSML and automatic instrumentation and
code generation, facilitated with the MoDePeMART approach and depicted
in the next section.

3 MoDePeMART: Model Driven Performance
Measurement and Assessment with Relational Traces

MoDePeMART integrates performance measurement and assessment in MDE,
in such a way that it is transparent to the developer. The example on UML is
described in Figure 1.

After the design model is finalized (1), the instrumentation (2) takes place.
Here, measurement points are specified in the model. Furthermore, also are spec-
ified metrics of interest. Finally, the context of the service is specified. More on
context is explained in Subsection 3.1. Measurement points, metrics, and context
are specified in the DSML defined in Section 4.

MoDePeMART 65

n-commercial Use Only

[type="movie"]

opt

videoItemFacade : VideoItemFacade itemFacade : ItemFacade

getItem(-, -)2:

getItem(-, -)3:

getVideoItem(-, -, -)1:

a)

On

Off

on() : voidoff() : void

b)

Fig. 2. Transformational (a) and reactive (b) behavior in getVideoItem method in-
vocation

From the design and performance measurement and assessment model trans-
formation (3) generates software code with integrated code for performance data
collection, and code for performance data storage and metrics computation. The
generated code for performance data storage and metrics computation is SQL
DDL code for tables needed for data storage, and SQL DML code for initial
table entries required for metrics computation. The transformation is followed
by compilation of the platform code.

After the deployment (5) of the generated code, RDBMS for storing and
metrics computation is initialized (6). Next, execution of test cases takes place
during which data about software execution are collected(7). Finally, to compute
performance metrics SQL DML queries are executed (8).

MoDePeMART approach is language independent approach. However, it
assumes some characteristics of modeling languages and systems. These charac-
teristics and performance assessment in such systems are discussed in the next
section.

3.1 Transformational and Reactive Software Systems and
Performance Assessment

MoDePeMART assumes that a modeling language for software development
facilitates modeling of two subsystems: transformational and reactive. Transfor-
mational [6] systems are systems which take some input value and transform
them to some output value through the set of steps specified by some algo-
rithm. For the same input value, they will always go through the same steps. An
example of transformational software system is in Figure 2 a).

The getVideoItem method is a method for obtaining video items in a small
electronic items management application. Two kinds of items are obtained from
the database with this method: a movie and a music video item. When user
requests a movie, the value of the variable type is “movie” and the user gets

66 M. Bošković and W. Hasselbring

two files: a movie trailer and the movie. The getItem invocation 2 obtains the
trailer and the invocation 3 obtains the movie. When user requests a music
video item, the value of type is not “movie” and only the getItem invocation
3 executes. This invocation obtains a music video file from the database.

Transformational programs are composed of [7]: simple commands (e.g. as-
signing a value to a variable), composite commands (e.g. a command block),
guarded command (e.g. a UML option block or if statement), guarded com-
mand set (e.g. UML alternatives or the C switch statement), and loops. These
commands are composed with two relations [7]: invocation (one uses another
one) and sequential composition (one executes before another one).

Reactive software systems are systems which receive stimuli from environment
and either change internal state, or produce some action in environment. The
behavior depends on both stimulus and current system state. The reactive sub-
system of the ItemFacade manages the data compression in database and the
getItem method communication. When the state is On, the data is compressed
in the DBMS and decompressed at the ItemFacade side. When Off, there is
no compression.

The context of the service execution has to be taken into account when assess-
ing performance. Inappropriate context specification can lead to inappropriate
performance assessment. In systems with interwoven transformational and re-
active part, both, transformational and reactive context have to be taken into
account. Transformational context is the sequence of method (non)executions
before and after the required service. For example, let us assume that it is of
interest the response time of the getItem method when obtaining a movie file.
If only the execution of the getItem would be considered without any specifi-
cation of previous executions, the computed response time would also include
executions of the getItem outside of the getVideoItem method. One more
attempt without the specification of context is to consider the time between the
invocation of the 3. getItem method from the getVideoItem method and the
arrival of it’s return value. However, in this case the final response time includes
obtaining movies and music videos. The solution is in specification that the re-
sponse time is computed for getItem method invoked from the getVideoItem
and that the optional block did not execute before the getItem execution.

Reactive context is the state of the system. The state can have a diverse impact
on response time. For example, if the communication in the previous example
is compressed, obtaining a movie response time can be reduced. However, the
response time of obtaining a trailer can be increased. Due to the small size of
the trailer the compression, transfer of compressed data, and decompression can
take more time than transfer of non-compressed data.

4 The Metamodel for Performance Measurement and
Assessment

In previous section it is explained that the MoDePeMART suggest declara-
tive specification of performance measurements and metrics computation with a

MoDePeMART 67

l Use Only

InstrumentedElement

StateCondition

MeasuredEvent

ScenarioEvent

SubScenario

Alternatives

Scenario

PrecedeContain Negative

Group

Root

+absent

1

*

+measuredScenarioEvent
1

*

+scenarioEventCondition
0..1

*

+contained
1

+contains1

+scenarioEvent

*

*

+preceded1

1

+precedes
1

1

+instrumentedElement
1

*

+alternative
1..*

*

+eventScenario1

*

+groupEvent*

*

+scenarioRoot
1

Fig. 3. The part of the metamodel for transformational context specification

DSML. For this reason, the DSML defining metamodel facilitates the declarative
specification of: execution context, and metric computation.

The declarative specification of transformational execution context is enabled
with the part of the metamodel in Figure 3.

The measurement points of a model are specified with instances of the In-
strumentedElement metaclass. Instrumented elements can be either simple
commands or statement block.

Transformational context can be specified with instances of Scenario, Root,
ScenarioEvent, Alternatives, Contain, Precede, Negation and SubSce-
nario metaclasses. A transformational context is encapsulated in the Scenario
metaclass, and consists of it’s ScenarioEvents, and interrelations between them.
A scenario event is an instrumented element and its reactive context. One in-
strumented element in the same reactive context can find itself several times
in a scenario and each time it is a different ScenarioEvent instance. For ex-
ample, getItem invocations in Figure 2 are specified with two ScenarioEvent
instances.

Interrelations form a tree composed of ScenarioEvent, Alternatives, Con-
tain, Precede, Negation and SubScenario metaclasses. A transformational
context starts with root invocation. A root can be either an instance of Scenar-
ioEvent for the scenario containing only one event, or an instance of Contain
for more complex scenarios. Metaclasses Contain and Precede enable spec-
ification of invocation and sequential composition, respectively. The metaclass
Alternatives supports specification of guarded command sets. Simple com-
mands are being specified with ScenarioEvent. Composite command specified
with the usage of SubScenario and all other metaclasses mentioned in this
paragraph. Guarded commands specification is made possible with the Nega-
tion and Precede, as explained on the example in Subsection 3.1. Finally, loop

68 M. Bošković and W. Hasselbring

ConditionElement

+conditionRelation : ConditionRelation

<<enumeration>>

ConditionRelation

overlapped

contains

overlaps
during

InstrumentedElement

StateCondition

ScenarioEvent

Binary

AND

NOT

OR

+scenarioEventCondition
0..1

*

+instrumentedElement
1

*

+instrumentedElement1

*

+leftOperand 1

*

+rightOperand 1
+operand

1

*

Fig. 4. The part of the metamodel for reactive context specification

can be considered as a statement block and it can be specified either as an
instrumented element or a composite command.

The metamodel part shown in Figure 4 enables the reactive context specifi-
cation.

Reactive context is specified with a boolean algebra of active states during
the scenario event execution. Furthermore, the interrelation of active states and
the scenario event is also taken into account. The boolean algebra is specified
with StateCondition, Binary, AND, OR, NOT metaclasses, and Condi-
tionElement metaclass. The possible interrelations are specified in the enumer-
ation ConditionRelation enumeration. Based on the assumptions/limitations
of the approach, explained in Section 7, and on the ontology of the interval in-
terrelations identified in [8], four possible interrelations are identified: contains,
during, overlaps, and overlapped. Contains is the interrelation between a
state and a scenario event where a state starts before and ends after the execu-
tion of the scenario event. Overlaps is the interrelation in which a state starts
before the start of the scenario event execution, but ends before the end of the
scenario event execution. During and overlapped are inverse to contains and
overlaps, respectively.

The MeasuredEvent metaclass is used after the context specification for the
definition of an event of interest. It contains a context in the eventScenario
attribute, and the event of interest in measuredScenarioEvent attribute. Fi-
nally, in some cases there is a need for treating several events as one. For example,
if a performance analyst would like to measure throughput of a component, he
would have to group all methods of that component, and then specify compu-
tation of throughput. The Group metaclass facilitates grouping of events for
which metrics are computed.

The specification of events of interest is followed by specification of desired
metrics and time intervals for which they are computed. The metrics metamodel
part facilitating metrics specification is presented in Figure 5.

MoDePeMART 69

Only For Non commercial Use O
meandeviation
avdeviation
stdeviation

median
mean
mode

max
min

<<enumeration>>
Statistics

StatisticalAnalysis

-statisticalFunction : Statistics

OcurrencePercentage

Distribution

-kind : DistributionKind

<<enumeration>>
DistributionKind

cumulative
density

OcurrenceRate

IntervalSet

Duration

Analysis

Metric

-durationAnalysis 1
*

-intervalSet1

*

Fig. 5. The part of the metamodel for performance metrics specification

Metrics for performance assessment defined in this metamodel correspond
to performance definition in Section 1, and UML SPT [9] and MARTE [10]
standard metrics. Duration and OccurrenceRate metaclasses correspond to
response time and throughput, respectively. OccurrencePercentage is used
for verification of execution probabilities of different alternatives in branching.

Duration of a program construct is being characterized with some statis-
tical functions. Those statistical functions are generalized with the Analysis
metaclass. Statistical functions are divided into two groups. One group are dis-
tribution functions, cumulative and density, defined with instances of Dis-
tribution and IntervalSet metaclasses. Distribution functions are computed
as histograms and IntervalSet instance defines withs of bars in histograms.
The second group of functions are statistical functions which summarize a set of
durations in one value. Such metrics’ computation is being defined with Statisti-
calAnalysis metaclass instances. Examples of these metrics are mean, median,
standard deviation, skewness and so on, and they are defined in the Statistics
enumeration. This set can be extended. The only requirement is that each func-
tion in this enumeration has the corresponding function in the target RDBMS.

Values of all metrics vary over the time. For example, during the peek periods
of day response time is higher than in the rest of the day. For this reason, the
assessment has to address issues of varying performance metrics values. This is
facilitated with the metamodel part in Figure 6.

SimpleAssessment metaclass enables separation of performance assessment
time intervals into sub intervals. For example, let the assessment be for a time
interval of one day and the metric of interest mean duration. With a Simple-
Assessment instance and an instance of TimeIntervalSet it can be specified
that mean duration is computed for each hour of the day. The TimeIntervalSet
instance defines subintervals for which the metric is computed, here each hour
of a day.

70 M. Bošković and W. Hasselbring

ommercial Use Only For Non-c

CompositeAssessmentSimpleAssessment

TimeIntervalSet

Assessment

Analysis

Metric

Group

-previousLevelAssessment
1

*

-metricAnalysis
1

*

-analysisGroup1

-metric
1

*

-timeIntervalSet1

*

Fig. 6. The metamodel part for specification of time varying metrics observations

CompositeAssessment metaclass enables further statistical analysis of the
simple assessment values. For example, with CompositeAssessment it can
be specified a computation of density distribution of previously mentioned one
hour mean durations. Furthermore, for example the standard deviation of one
hour mean durations for six hours time intervals can be computed. The time
subintervals for composite assessment are also specified with TimeIntervalSet
instances.

5 Evaluation

The approach is evaluated with an implementation of a UML Profile, and trans-
formations from the profile to Java with RMI and MySQL RDBMS. The UML
profile is entitled PeMA: The UML Profile for Performance Measurement and
Assessment, and it is, at the present moment, suited only for UML Class and
State diagrams. The implementaion in MagicDraw 15.1 Community Edition can
be seen in Figure 7.

For these two diagram types the only measurement elements which can be
instrumented are operations in Class diagrams and states in State diagrams.
The rest of the metamodel is implemented as a model library.

UML Class and State diagrams are transformed into client-server Java RMI
applications. For denotation of UML classes modeling client functionality is de-
fined a stereotype �Client�. A corresponding Java class is generated for each
class with the �Client� stereotype. Furthermore, generated are proxies of server
classes whose methods are directly invoked by clients.

Server classes are classes without the �Client� stereotype. For each server
class are generated a corresponding Java functionality implementation class and
it’s instances pool class. Pool classes facilitate concurrent execution defined in
Section 7. When a client connects to the server immediately are allocated from
pools instances of Java functionality classes to serve to the client. Dispatching
between clients and corresponding instances is performed by generated RMI
server object class. State charts at the client and server side are implemented
with State pattern [11]. These transformations are out of this paper’s scope.

MoDePeMART 71

Fig. 7. The implementation UML Profile for Performance Measurement and
Assessment in MagicDraw 15.1 CE. Figure shows the context specification part.

Used RDBMS for performance data storage and metrics computation is MySQL
5.2. JDBC MySQL Connector/J driver version 5.1.5 was used as a database driver
for performance data storage. Transformations from measurement and assessment
part to SQL code for initialization and metrics computation are out of scope of this
paper.

Experiments on measuring the duration of the performance data storage
procedure were conducted to depict the impact of the measurements to the
overall performance. The application was running on the Intel Pentium 4 3.00
GHZ hyperthreaded processor (two virtual cores), 1GB of physical memory, and
GNU/Linux 2.6.17.13. The observed value in the experiment was the duration
of the performance measurement and data storage routine. Furthermore, it is
analyzed with different number of concurrent service requests. For each number
of concurrent requests, the experiment was repeated 10 times. Each repetition
contained the complete restart of the server, in order to approximate the impact
of the distribution of server software over working memory pages.

The experiment was conducted to show the central tendency of the duration
of the routine. This should serve as orientation to the performance analyst of
how long might the routine last. For this reason was computed the median of the
duration routine. Then, in order to approximate the value of the data collection
and storage routine median, it is computed the mean for all 10 repetitions. The
results can be seen in Table 1.

The results show that the performance data collection and storage routine
increases with the number of concurrent service requests. In order to obtain
the right values of the response times the resulting values from Table 1 for the

72 M. Bošković and W. Hasselbring

Table 1. The mean of the median of measurement and storage routine for various
number of concurrent invocations

Concurrent requests 1 10 20 30 60 100

mean(median) 192ms 204 ms 229ms 260ms 289ms 327ms

appropriate number of concurrent invocations should be multiplied by the num-
ber of the measurement points at one service and subtracted from the complete
measured service response time.

6 Related Work

The measurement and assessment of performance is an important topic in soft-
ware engineering. This section compares MoDePeMART with approaches for
performance measurement and assessment at the platforms level, shows their
shortcomings, and explains improvements which MoDePeMART adds. Sub-
section 6.1 explains the concerns in performance measurement and assessment
and Subection 6.2 shows the comparative analysis of addressing the concerns.

6.1 Comparative Analysis Criteria

One of the major concerns is facilitating statistical analysis of response time.
Different kinds of system require different statistical analysis. Furthermore, the
parallel analysis of response time and throughput is also needed for validation
of meeting SLAs with different number of users. Moreover, workload character-
istics observations are important for validation of correspondence of prediction
assumptions with test cases. Workload is described with the number, request
rate, and arrival pattern.

Characteristics of paths are also of significant interest in measurement and
assessment. Path characteristics, such as probability of execution and number of
iterations are used in performance predictions.

Not all business tasks are of the same importance in systems, and the most
important have to be met in any conditions. Ability of their isolation is of great
importance. Furthermore, identification of execution context for critical business
tasks is as important as identification of critical tasks themselves.

Performance analysis of software systems has to be done for representative
time periods. For example, mean response time of whole day usage must not be
the same as during the peek usage period.

Instrumentation transparency is also of great importance in measurement. Ad-
ditional code for measurement can make the code for business logic more complex
and hard to understand. Furthermore, reduction of measurement points is also
one of the major concerns. It reduces measurement induced system overhead
and saves space and time in metrics computation.

Finally, for avoiding assessment failures, keeping consistency between the data
structures of collected data and for analysis is also of significant importance.

MoDePeMART 73

Table 2. Comparative analysis of related work ((+) facilitated, (-) not facilitated, (o)
partially facilitated)

-+--+-o-------The Open Group [15]

++(o)+(o)++++-++-++MoDePeMART

-++---o-----++Diaconescu et al. [18]

+++-o-o-------Debusman and Geihs [17]

+-+-o-o-------Marenholz et al. [16]

+++-o-oo-++-++Hollingsworth et al. [14]

+++-o-oo-+---+Liao and Cohen [13]

+++-o-o------+Klar et al. [12]

M
easurem

ent
points reduction

M
easurem

ent and
m

etric com
putation

data types
consistency

Instrum
entation

transparency

M
etrics validity

period specification

S
pecification of

execution context
(transform

ational
and reactive)

Isolation of critical
business tasks

P
ath characteristics

(probability in
branching, loop iteration

num
bers)

W
orkload

characteristics
(num

ber of requests,
request rate, pattern)

T
hroughput

R
esponse tim

e
statistical analysis

Measurement and
Assessment Concern

Approach

6.2 The Comparative Analysis

The results of the comparative analysis can be seen in Table 2.
Klar et al. [12] introduced the idea of relating design models and instru-

mentation. Their approach enabled statistical analysis of durations. The in-
strumentation is done at the model level, and instrumentation and metrics
computation automatically generated. However, there is no possibility of through-
put and workload characteristics assessment. Furthermore, there is no negation
of an occurrence. For this reason transformational context specification and iso-
lation of business critical task is only partially supported. Reactive context and
specification of metrics computation for various intervals is also not supported.

Liao and Cohen [13] and Hollingsworth et al. [14] introduced languages for
performance assessment and monitoring. The major shortcomings of these lan-
guages are: lack of the reactive context analysis and inability to specify metrics
computation for time intervals. Furthermore, due to the lack of the sequence not
execution construct the business task isolation, and transformational context
specification are only partially supported. Finally, Liao and Cohen [13] do not
enable throughput assessment.

Application Response Measurement (ARM) standard is an attempt of stan-
dardization of data types in performance analysis. This standard addresses the
questions of transformation context specification and the consistency of data in
measurements and metrics computation. Aspect orientation, on the other hand,
e.g. Marenholz et al. [16] solves only the problems of transparent instrumenta-
tion. Debusman and Geihs [17] combine AOP and ARM.

Diaconescu et al. [18] add a transparent software layer between components
and middleware. Instrumentation is done at component interface, which is not
sufficient for context and critical business instrumentation.

MoDePeMART approach manages all of the previous mentioned concern
except for number of loop iterations analysis. Workload arrival pattern recogni-
tion is still not supported.

74 M. Bošković and W. Hasselbring

7 Limitations

MoDePeMART can be used in software systems with the next assumptions.

Measurement and assessment is possible only in systems with concur-
rency without intercommunication. In the execution model it is assumed
that there are no concurrent executions which interfere. Moreover, the or invoker
of a scenario is not aware of concurrent execution. Such approach is implemented
in, for example, JEE Session Beans.

Synchronous communication. At the present time MoDePeMART sup-
ports only performance measurement and assessment for the systems commu-
nicating synchronously. Synchronous communication is the one where the caller
of an operation is blocked and waits until the callee returns a result. After the
caller gets the result it continues the execution [19].

There is no support for specification of measurement and metrics
computation of loopbacks. A loopback is when in a scenario execution control
flow reenters the method whose body already executes. The simplest loopback
is recursion.

Granularity of timing mechanism is large enough so that execution of
each instrumented element occurs in different chronon. Chronon is the
smallest unit of time supported by the discrete time model. The granularity is
defined with the smallest time units supported by the timing mechanism, such
as milliseconds or nanoseconds. The assumption of this approach is that each
instrumented element execution with the same sequence identifier executes in
different chronon.

Job flow is assumed in the composite occurrence rate assessment.
The system should be fast enough to handle the service requests, and thus the
competition rate equals the arrival rate.

Finally, the approach can be used only for verifying response time
and throughput of services. Verifying the equivalence between assumptions
on workload, data, and loop iteration numbers in predictions and measurements
and in execution is not facilitated.

8 Outlook and Future Work

This paper presents the MoDePeMART an approach for model driven perfor-
mance measurement and assessment. This approach introduces an idea of raising
the abstraction level of measurement and assessment in two ways. First, measure-
ment and assessment is specified in the terms of modeling and not in the terms of
implementation constructs. Second, it suggests a DSML for metrics specification
and computation. Moreover, it suggests usage of relational database management
systems for performance metrics storage and computation. The metamodel for
the performance measurement and assessment DSML and a validation as a UML

MoDePeMART 75

Profile are presented in this paper. With the comparative analysis it is shown
that the major benefits of this approach are specification of performance metrics
interval computation and the isolation of critical business tasks. However, there
are several possible improvements of the metamodel.

The metamodel could be extended in several ways. It could be extended to
support performance measurement and assessment of asynchronous communica-
tion. Furthermore, the metamodel could be extended to support measurement
and assessment of resources utilization. Moreover, the characterization of data
used as parameters in services could also be added to the metamodel. Addi-
tionally, computation of iteration loop numbers could also be added. This is
often needed when assessing the service characteristics. Finally, workload pat-
terns are of great importance for service performance assessment. Extension of
the metamodel for workload patterns assessment would be of great usefulness to
performance analyst.

Current PeMA profile used only State and Class diagrams and both of them
are not suited for specification of measurement context. It could be explored us-
age of activity and sequence diagrams for specification of execution scenario of in-
terest. These diagrams are usually used for control flow description/prescription.
This qualifies them as a good basis for transformational context specification.
However, still remains the problem of finding the appropriate elements for state
context, metrics, and the assessment part of the metamodel. Furthermore, ap-
plication of the profile to other diagrams could be explored. In extending the
profile for application to other diagrams the major challenge is the development
of the stereotypes denotating instrumented elements. For example, in the UML
metamodel body of activity diagram ConditionalNode is specified as an at-
tribute. For this reason, it can not be directly annotated as an instrumented
element.

The MoDePeMART currently facilitates only assessment of services perfor-
mance. However, it offers a several promising extension directions. With
previously mentioned metamodel extension, it could be made very useful in
performance debugging or even continuous monitoring. Such language could be
support for specification of automatic system adaptation based on the captured
runtime performance characteristics.

References

1. Hasselbring, W., Reussner, R.: Toward Trustworthy Software Systems. IEEE Com-
puter 39(4), 91–92 (2006)

2. Sommerville, I.: Software Engineering, 8th edn. Pearson/Addison Wesley, London
(2007)

3. Smith, C.U., Williams, L.G.: Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software. Addison-Wesley, MA (2001)

4. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-Based Performance
Prediction in Software Development: A Survey. IEEE Transactions on Software
Engineering 30(5), 295–310 (2004)

5. Selic, B.: A Short Course on MDA Specifications. In: INFWEST Seminar on Model
Driven Software Engineering, Pirkkala, Tampere, Finland (2006)

76 M. Bošković and W. Hasselbring

6. Wieringa, R.J.: Design Methods for Reactive Systems: Yourdon, Statemate, and
the UML. Morgan Kaufmann Publishers, San Fransisco (2003)

7. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall PTR, Englewood Cliffs
(1976)

8. Allen, J.F.: Maintaining Knowledge About Temporal Intervals. Communications
of ACM 26(11), 832–843 (1983)

9. Object Management Group. UML Profile for Schedulability, Performance,
and Time Specification, OMG document formal/05-01-02 (January 2005a),
http://www.omg.org/cgibin/apps/doc?formal/05-01-02.pdf (accessed May
2009)

10. Object Management Group. A UML Profile for MARTE: Modeling and Analyzing
Real-Time and Embedded Systems, Beta 2, OMG Adopted Spec., OMG document
ptc/2008-06-09 (June 2008),
http://www.omgmarte.org/Documents/Specifications/08-06-09.pdf (accessed
May 2009)

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley, Boston (1995)

12. Klar, R., Quick, A., Soetz, F.: Tools for a Model-driven Instrumentation for Moni-
toring. In: The 5th Int’l. Conf. on Modeling Techniques and Tools for Comp. Perf.
Evaluation, pp. 165–180. Elsevier Science Publisher B.V., Amsterdam (1991)

13. Liao, Y., Cohen, D.: A Specificational Approach to High Level Program Monitoring
and Measuring. IEEE Trans. on Soft. Engineering 18(11), 969–978 (1992)

14. Hollingsworth, J.K., Niam, O., Miller, B.P., Xu, Z., Goncalves, M.J.R., Zheng,
L.: MDL: A Language and a Compiler for Dynamic Program Instrumentation. In:
Proc. of the 1997 Int. Con. on Parallel Architectures and Compiler Techniques, pp.
201–213. IEEE Computer Society, Washington (1997)

15. The Open Group. Application Response Measurement (ARM)(1998),
http://www.opengroup.org/tech/management/arm Technical Standard, Ver-
sion 2, Issue 4.1 (accessed May 2009)

16. Mahrenholz, D., Spinczyk, O., Schroeder-Preikschat, W.: Program Instrumentation
for Debugging and Monitoring with AspectC++. In: Proc. of the 5th IEEE Int.
Symp. on Object-Oriented Real-Time Distributed Computing, pp. 249–256. IEEE
Computer Society, Washington (2002)

17. Debusmann, M., Geihs, K.: Efficient and Transparent Instrumentation of Applica-
tion Components using an Aspect-oriented Approach. In: Brunner, M., Keller, A.
(eds.) DSOM 2003. LNCS, vol. 2867, pp. 209–220. Springer, Heidelberg (2003)

18. Diaconescu, A., Mos, A., Murphey, J.: Automatic Performance Management in
Component Based Systems. In: 1st International Conference on Autonomic Com-
puting (ICAC 2004), pp. 214–221. IEEE Computer Society, Washington (2004)

19. Object Management Group. UML 2.0 Specification: Superstructure, OMG docu-
ment ptc/05- 07-04 (November 2004),
http://www.omg.org/cgi-bin/doc?formal/05-07-04 (accessed May 2009)

http://www.omg.org/cgibin/apps/doc?formal/05-01-02.pdf
http://www.omgmarte.org/Documents/Specifications/08-06-09.pdf
http://www.opengroup.org/tech/management/arm
http://www.omg.org/cgi-bin/doc?formal/05-07-04

	Model Driven Performance Measurement Assessment with MoDePeMART
	Introduction
	Motivation
	MoDePeMART: Model Driven Performance Measurement and Assessment with Relational Traces
	Transformational and Reactive Software Systems and Performance Assessment

	The Metamodel for Performance Measurement and Assessment
	Evaluation
	Related Work
	Comparative Analysis Criteria
	The Comparative Analysis

	Limitations
	Outlook and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

