
Taming Graphical Modeling

Hauke Fuhrmann and Reinhard von Hanxleden

Real-Time and Embedded Systems Group, Department of Computer Science
Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24118 Kiel, Germany

{haf,rvh}@informatik.uni-kiel.de
www.informatik.uni-kiel.de/rtsys/

Abstract. Visual models help to understand complex systems. How-
ever, with the user interaction paradigms established today, activities
such as creating, maintaining or browsing visual models can be very te-
dious. Valuable engineering time is wasted with archaic activities such as
manual placement and routing of nodes and edges. This paper presents
an approach to enhance productivity by focusing on the pragmatics of
model-based design.
Our contribution is twofold: First, the concept of meta layout enables
the synthesis of different diagrammatic views on graphical models. This
modularly employs sophisticated layout algorithms, closing the gap be-
tween MDE and graph drawing theory. Second, a view management logic
harnesses this auto-layout to present customized views on models.
These concepts have been implemented in the open source Kiel In-
tegrated Environment for Layout Eclipse Rich Client (KIELER). Two
applications—editing and simulation—illustrate how view management
helps to increase developer productivity and tame model complexity.

1 Introduction

Simply put, the main task of a programmer is to command the computer to
do the right thing. The programming mechanics of computers has undergone
quite an evolution: From manually stamping programs on punch cards over
non-reversible type writers to the main method still used today—text editor
and keyboard. While different IDEs might offer various support levels for large
software artifacts, the basic mechanics of writing or changing a line of code is
rather standard and efficient. Hence, editing text has been established for many
decades.

The introduction of graphical models has added the second dimension to
one-dimensional text. However, this new freedom comes at a heavy price: We
are back to the early times of mechanical typewriters with rather archaic user
interactions. Graphical layout has to be manually defined by placing and rout-
ing of nodes and edges. Deleting graphical objects, like using white-out on a
typewriter, creates new white-space that might not be large enough to insert
new expressions, i. e. new graphical constructs. Manually creating more space
in a complex diagram is like using scissors and glue. In fact, in large industrial
projects it is not uncommon that highly-paid engineers use scissors and glue

www.informatik.uni-kiel.de/rtsys/


to create large hand-crafted posters from print-outs to help navigate through
complex models.

Graphical views on models are manually defined and hence static like a type-
written piece of paper. Creating multiple different views, e. g., for different levels
of abstraction, onto the same model requires much manual editing work. Often
one ends up working with one single abstraction level or changing syntax from
graphical to structural to get more detailed or more abstract representations.
Although abstraction might play an important role for MDE, so far, graphical
aspects of models certainly do not. Instead of unfolding their potential as a vivid
means of communication they remain no more than syntactic sugar. When trying
to communicate with the computer through graphical models, the computer will
not answer in the same language. For example, model transformations typically
lose the graphical information and result in a model without a graphical view,
which is like typing in text and getting a punch card as an answer. Even graphical
means like graph grammars do not produce proper layouts for newly introduced
items. If one believes that a diagram communicates the meaning of a model
better than another representation, and if one wants this to be widely accepted
by domain users that are not necessarily computer scientists, then one has to
teach computers to truly master this language.

This paper presents an approach to bridge the gap between MDE and graph
drawing theory to enable the automatic processing of graphical models and fun-
damentally enhance the user interaction mechanisms—also for rich diagram no-
tations. After the related work in Sec. 2, Sec. 3 gives the required terminology
and defines the focus of our approach—pragmatics. Sec. 4 introduces the central
contributions: First, Sec. 4.1 explicates how meta layout enables the synthesis
of different diagrammatic views on graphical models. Meta layout offers inter-
faces to plug in sophisticated layout algorithms and to utilize them according
to higher-level optimization criteria. Second, Sec. 4.2 presents how view man-
agement logic employs this auto-layout to dynamically and interactively present
custom views on models. Sec. 5 illustrates these concepts with the open source
Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER). Sec. 5.2
discusses two fields of application—model editing and simulation. Sec. 6 presents
an experimental evaluation, the paper concludes in Sec. 7.

For a more detailed presentation than space permits here, we refer to an-
other report [1] that includes a further discussion of the layout parametrization
(Sec. 4.1) and structure-based editing (Sec. 5.2).

2 Related Work

This work is an interdisciplinary task and hence there is a large body of related
work emerging from related communities.

The MDE community employs means of user experience enhancements or-
thogonal to ours [2]. There are multiple recent approaches on creating model-
to-model transformations not by complex transformation languages, but from
examples [3] or by demonstration [4]. It would be interesting to combine such



approaches with the structure-based editing framework presented in Sec. 5.2
to give the user very natural ways to define custom editing operations him-
or herself. Also, transformation languages based on triple graph grammars [5]
could augment structure-based editing by graphical views on the transformations
themselves.

The field of Human Centred Software Engineering [6] also addresses usability
and productivity. However, these approaches mainly focus on the question of how
to make the best user experience with a given product. In contrast, we try to
enhance the development process itself with novel tool support.

Another related community focuses on software visualization [7], which mainly
presents what we call effects on graphical views (cf. Sec. 4.2). We also employ
the notion of focus & context by Card et al. [8], see Sec. 5.2. Musiel and Jacobs
[9] apply this technique to UML class diagrams, using notions of level of detail
and a rudimentary specialized automatic layout algorithm. In our approach to
view management we try to generalize such ideas by orchestration of software
visualization concepts (effects) with the context (triggers) in which they should
be applied to dynamically synthesize graphical views on models.

Automatic layout problems for arbitrary diagrams are often NP-complete,
and diagram quality is difficult to measure [10]. However, the graph drawing
theory community emerged with sophisticated algorithms that solve single lay-
out problems efficiently with appealing results [11,12]. There exist open layout
library projects with multiple sophisticated algorithms such as the Open Graph
Drawing Framework (OGDF) [13], Graphviz [14] and Zest1. There are also com-
mercial tools such as yFiles (yWorks GmbH) and ILOG JViews [15]. Demirezen
et al. use automatic layout in Eclipse with the GraphViz tool as an example of
reusing tools employing model transformations [16].

The KIEL project [17] evaluated the usage of automatic layout and structure-
based editing in the context of Statecharts. It provided a platform for exploring
layout alternatives and has been used for cognitive experiments evaluating es-
tablished and novel modeling paradigms. However, it was rather limited in its
scope and applicability, hence it has been succeeded by the KIELER project,
which is the context of the work presented here.

3 Pragmatics

In linguistics the study of how the meaning of languages is constructed and
understood is referred to as semiotics. It divides into the disciplines of syntax,
semantics and pragmatics [18]. These categories can be applied both to natural
as well as artificial languages, for programming or modeling. In the context of
artificial languages, syntax is determined by formal rules defining expressions
of the language and semantics determines the meaning of syntactic constructs
[19]. “Linguistic pragmatics can, very roughly and rather broadly, be described
as the science of language use” [20]. This also holds for MDE with its artificial

1 http://www.eclipse.org/gef/zest/

http://www.eclipse.org/gef/zest/


Semiotics
in Eclipse

Pragmatics
by KIELER

Dynamic
Views

Meta
Layout

Layout
Algs.

Para-
meters

View
Manage-
ment

Model
Creation

Visuali-
zation

Semantics

Execution
Manager

Syntax

abstract

Meta-
models
(EMF)

concrete

Graphical
(GMF)

Textual
(TMF)

Fig. 1. KIELER! focuses on pragmatics and enhances the use of syntax and semantics
of models which are defined by modeling platforms such as Eclipse

languages, as discussed in the following. However, first we clarify some more
terminology specific to MDE according to the modeling linguists Atkinson and
Kühne [21].

The main artifacts in MDE are models with two main concepts: A model
represents some software artifact or real-world domain and conforms to a meta-
model, defining its abstract syntax. Additionally, the concrete syntax is the con-
crete rendering of the abstract concepts. Concrete syntax can be textual or
displayed in a structured way, for example a tree view. To be comprehensible,
also a graphical syntax is very often used, the Unified Modeling Language (UML)
is one example.

A graphical model is a model that can have a graphical representation, e. g.,
a UML class model. A view onto the model is a concrete drawing of the model,
sometimes also diagram or notation model, e. g., a class diagram. The abstract
structure of the model leaving all graphical information behind is the semantical
or domain model, or just model in short. Hence, the model conforms to the
abstract syntax, while the view conforms to the concrete syntax. A view can
represent any subset of the model, which in some frameworks is used to break
up complex models into multiple manageable views. Hence, there is no fixed
one-to-one relationship between model and view.

State-of-the-practice approaches still lack generic answers on how to specify
semantics [22], but handle syntax of models very well, both abstract and con-
crete. They provide code generators to easily provide model implementations,
syntax parsers and textual and graphical editors with common features like the
Eclipse Graphical Modeling Framework (GMF)2.

2 http://www.eclipse.org/modeling/gmf/

http://www.eclipse.org/modeling/gmf/


The third field of linguistics, pragmatics, traditionally refers to how elements
of a language should be used, e. g., for what purposes a certain statement should
be used, or under what circumstances a level of hierarchy should be introduced
in a model. We slightly extend this traditional interpretation of pragmatics to
all practical aspects of handling a model in its design process [23]. This includes
practical design activities themselves such as editing and browsing of graphical
models in order to construct, analyze and effectively communicate a model’s
meaning.

4 Taming Complex Models

The main problem with pragmatics in state-of-the-practice modeling IDEs is the
widely accepted way of user interaction with diagrams: What-You-See-Is-What-
You-Get (WYSIWYG) Drag-and-Drop (DND) editing. DND here encompasses all
manual layout activities that a modeler has to perform, such as positioning—like
dragging new objects from a palette or toolbar to the canvas—or setting sizes
of graphical objects (nodes) or setting bend points of connections (edges). We
do not distinguish whether such actions are real drag-and-drop operations with
the mouse or are performed by keyboard, e.g. when moving objects around with
arrow keys.

When working with graphical models, it is useful to have an immediate graph-
ical feedback on editing operations, hence, WYSIWYG is not the problem. How-
ever, DND adds a lot of extra mechanical effort on editing diagrams. To quote
a professional developer [24]: “I quite often spend an hour or two just moving
boxes and wires around, with no change in functionality, to make it that much
more comprehensible when I come back to it.”

With such a standard editing paradigm one often ends up with exactly one
static view for a subset of a model where the developer once has decided the
abstraction level—e. g., level of detail or subset of displayed nodes. To get a
different view requires to start the editing process all-over.

4.1 Meta Layout

The idea of meta layout is to synthesize views automatically, thus freeing the
user to focus on the model itself. As discussed further in Sec. 4.2, this not only
saves time formerly spent on manual drawing activities, but yields completely
new possibilities for user interaction. The meta layout framework consists of two
main parts: (1) A bridge between layout algorithm libraries and diagram editors
and (2) parametrization possibilities to get the desired layout result of available
algorithms, see also Fig. 2.

The layout bridge connects a range of layout algorithms with established
graphical model diagram editors. Fig. 3, with a class diagram of the KGraph,
shows an example layout/editor combination.



MetaLayout

GraphVizOGDF

Sugiyama

Java

KIELER layered

Eclipse GEF Arrange All

KIELER BoxLayout

Fig. 2. Meta layout in KIELER: Employ different layout algorithms in one diagram.

Fig. 3. The KGraph: An Ecore class diagram with mixed upward planarization.

As illustrated in Fig. 4, the meta layout framework contains a basic graph
data structure, the KGraph, for exchanging data between a concrete diagram
editor and a layout algorithm. To achieve genericity, this does not assume any
specific format of either of the two worlds. Glue code that translates between
used data structures in both domains allows to use any diagram editor with any
layout algorithm. The KGraph is used as an intermediate format to (1) formulate
the layout problem and to (2) store the layout result, i. e. the concrete coordinates
and sizes. The KGraph follows the ideas of GraphML3 but is simplified to the
needs in this context.

Meta layout not only bridges between diagrams and layouters, it also tries
to do this in a smart customizable way. It provides an extensible layout option
system with priorities to specify which layouter types fit best to which dia-
gram kinds. Parameters provided by the algorithms can be made available in
the framework. Additionally, layouters get called recursively if the algorithms

3 http://graphml.graphdrawing.org/

http://graphml.graphdrawing.org/


KIELER Infrastructure for
Meta Layout

KGraph

Diagram Editor View
Layout Algorithm

X=10
Y=5

X=5
Y=12

X=18
Y=10

Algorithm
Glue Code

extract graph

apply layout

Diagram
Glue Code

attach layout result

transform graph

Fig. 4. Overview of the Kieler Infrastructure for Meta Layout (KIML).

themselves do not handle nested graphs. Furthermore, meta layout allows to use
multiple different layout algorithms for different parts of one and the same view
as shown in Fig. 2, which is well suited for nested models. More details on these
features are given elsewhere [1].

In summary, meta layout bundles a set of layout algorithms and matches
them with concrete diagram syntaxes. It lets the user mix parameters and lay-
outers to find the optimal layout result for custom model views.

However, there are limits of automatic layout of views when models become
too complex. Consider for example the current UML2 Metamodel, which con-
sists of 263 types with no nested structuring and thousands of relations and
inheritances between the classes. This metamodel is available as an EMF Ecore
model in the Eclipse Model Development Tools (MDT)4, as a semantical model
augmented with some very small manually placed views, but due to the model’s
complexity, there is no complete view available [25]. With meta layout, it is pos-
sible to synthesize such a view; Fig. 5a shows the layout generated by KIML us-
ing the Mixed-Upward-Planarization algorithm [26], which is optimized for class
diagrams and respects the different types of edges. However, the result looks
more like a VLSI integrated-circuit die and is hardly usable. Especially the nu-
merous relations make the diagram unreadable. Standard navigation techniques
like manual zooming and panning come to their limits; see also Fig. 5b. This
limitation of plain layout application prompts the need for view management,
discussed next.

4.2 View Management

When models and their corresponding views become too complex, it is time for
abstraction. View management is inter alia a means to automate the choice of
right abstraction levels. For a given model, view management chooses the subset
of the model that should be presented in a view. It decides the level of detail
[9] for all graphical elements and adds other graphical effects to views. This
automatic synthesis of views is only possible due to the automatic layout service
offered by meta layout. Hence, in different words, meta layout provides model

4 http://www.eclipse.org/modeling/mdt

http://www.eclipse.org/modeling/mdt


(a) Complete model. (b) Cutout with 20x zoom.

(c) A filtered view to the same model showing only Activity model parts.

Fig. 5. Class diagram of the UML 2.1 metamodel in Eclipse. Standard navigation
techniques come to their limits. Views become unusable. Filtering in view management
can synthesize a feasible view.

views as a service which view management uses. The idea of view management is
to focus automatically to the parts of the model that are “currently interesting.”

Obviously the context in which the user employs the model is important for
this task. For example, to learn only about a smaller subset of the UML, e. g.,
Activity models, one may create a customized view on the UML metamodel that
only contains elements immediately relevant to Activity models. Fig. 5c shows
such a view that is again automatically synthesized with meta layout. However,
this limited set of only 79 classes with much less edges presents a view that
actually can be used very well to browse Activity models.



(a) KIELER specifying layout options. (b) Aspects of view management [23].

Fig. 6. Meta layout and view management.

To make view management context sensitive requires a generic architecture
that allows to define conditions under which certain views shall be synthesized.
View management listens to triggers or events under which certain graphical
effects should be executed on the view. The orchestration of a set of triggers
and effects forms a view management scheme (VMS), see also Fig. 6b. Triggers
are categorized in user triggers—e. g., manual selection of elements—and system
triggers—e. g., an event during a simulation run. Effects range from highlighting
elements, configuring levels of details, filtering graphical objects to visualizing
simulation data. An important effect uses the meta layout to rearrange the view
that might have been changed by other effects like filters. As space here is limited,
our following examples concentrate on the filtering mechanism. The next section
presents an implementation of view management and discusses two applications.

5 Kiel Integrated Environment for Layout Eclipse Rich
Client (KIELER)

The approaches presented in this paper are implemented and evaluated in the
project KIELER, the Kiel Integrated Environment for Layout Eclipse Rich Client.5

In the spirit of genericity, KIELER builds on the plug-in concept provided by
Eclipse and especially its modeling projects.6 As illustrated in Fig. 1, KIELER

provides enhancements for pragmatics, to be combined with syntax and seman-
tics defined by other projects.

5 http://www.informatik.uni-kiel.de/rtsys/kieler
6 http://www.eclipse.org/modeling/

http://www.informatik.uni-kiel.de/rtsys/kieler
http://www.eclipse.org/modeling/


5.1 Kieler Infrastructure for Meta Layout (KIML)

KIML uses the Eclipse Modeling Framework (EMF) to specify abstract syntax.
For concrete syntax KIML supports graphical editors generated with the Graphi-
cal Editing Framework (GEF), a framework to implement graphical DSL editors.
The Graphical Modeling Framework (GMF) is a generative approach to GEF

editors that has a standard persistence handling of models and their views (the
notation model in GMF terminology). KIML provides a generic implementation
of the diagram glue code (Fig. 4) for GEF/GMF.

Hence, for most GMF editors KIELER’s automatic layout can be used out-
of-the-box. Optionally, the Eclipse extension point layoutInfo is used to specify
default values for layout options, e. g., diagram types to setup default layout
types. This has been done, for example, for the MDT/Papyrus UML suite [27].
For other concrete syntax frameworks based on GEF, like the Generic Eclipse
Modeling System (GEMS)7, Marama [28] or Graphiti8, the glue code would have
to be extended accordingly.

For layout algorithm integration KIELER provides the layoutProvider ex-
tension point. It is used to specify the layout options that the corresponding
algorithm accepts and priorities for diagram types that it supports. The algo-
rithm itself has to be implemented following a simple abstract class.

How rich a diagram notation may be is determined by the diagram editor and
the supported features of the concrete layout algorithm. Currently it supports
many rich notations like nesting, hyperedges, multiple edge types, unconnected
boxes (e. g., orthogonal regions, swimlanes), port constraints, flow direction,
which can be extended in order not to limit the concrete syntax of models and
gets elaborated in [1]. It explicitly focuses not only on popular current Eclipse-
based editors, but also on widely accepted notations like Matlab/Simulink or
Labview.

5.2 Applications for View Management

As an example, the following illustrates how view management in KIELER aug-
ments the editing and simulation of SyncCharts [29].

Simulation with Focus & Context One means to learn about the behavior
of a SyncChart is to execute it stepwise while the simulation browser highlights
active states. This paradigm is used by most state machine based tools like
Matlab/Simulink/Stateflow or Rhapsody. The usual means for navigation are
panning, zooming and opening different parts of the model in different windows
or canvases. However, for complex models it becomes difficult and effort prone
to manually navigate through a model. Figs. 7a/b demonstrate this with an
avionics application [30].

7 http://www.eclipse.org/gmt/gems/
8 http://www.eclipse.org/modeling/gmp

http://www.eclipse.org/gmt/gems/
http://www.eclipse.org/modeling/gmp


(a) The whole SyncCharts model. (b) Even in deep hierarchy usually the
full complexity of the model is hidden.

(c) Focus & Context (1): Starting a sim-
ulation collapses all inactive states and
manually collapsed regions.

(d) Focus & Context (2): Advancing a
simulation will always expand only ac-
tive states with their full hierarchy.

Fig. 7. Focus & Context in a SyncChart

To alleviate this problem, the view management service can synthesize a new
view on the model dynamically. The idea is to use focus and context methods to
present only the “interesting” parts of the model [17]. For SyncCharts, a natural
definition of “interesting” considers the currently active states, as illustrated in
Figs. 7c/d. In KIELER, a specific trigger for the simulation notifies the view
management about changes in state activity. A simple effect then highlights
active states. An additional effect changes the level of detail at which the model
objects get displayed in the view. In KIELER this is implemented by using GEF’s
methods to collapse or expand compartments, which comprise the contents of
states and parallel regions. Afterwards view management uses KIML to rearrange
all elements and zooms-to-fit to make best use of the given space. This unfolds
the potentials of focus & context, as it presents all required details in the focus
while still showing the direct neighbor inactive states collapsed with reduced
detail level as the context. An animated morphing between the different views
is provided to match the mental map of the user. For an impression of this, the
reader is referred to example videos on-line (or the KIELER tool itself).



(a) Adding a choice construct.

SyncChart

S

SyncChart
Add
Region

Add
Region

SyncChart
Remove 
Regions

(a) (b) (c)

(b) Adding a region to simple and a complex
state, followed by removal of all regions.

Fig. 8. Example transformations for SyncCharts

Structure-Based Editing Another task in an MDE design process is to create
or modify models. One approach to harness view management is to go back to
textual editing. A textual editing framework like Xtext9 can be enriched with
graphical views synthesized on-the-fly to get full round-trip engineering.

An alternative approach that stays in the graphical domain and keeps the di-
rect visual feedback like WYSIWYG is structure-based editing. It employs model-
to-model (M2M) transformations on the semantic model—its structure. It is an
interactive approach where the user can work on the model view. The workflow
for editing a model reduces to the following steps: (1) Focus a graphical model
object for modification and (2) apply an editing transformation operation. View
management with KIML applies the transformation, creates new graphical ele-
ments, and rearranges the resulting view.

The general implementation scope is shown in Fig. 9a. Again, to be generic,
it allows any M2M transformation framework to be used with KIELER Structure-
Based Editing (KSBasE). To integrate with the user interface, KIELER connects
to the Eclipse Textual Modeling Framework (TMF) Xtend transformation system
and all graphical GMF editors.

6 Evaluation

To assess the benefits of view management for model editing, we have conducted
a study using KIELER. The hypothesis to be evaluated was that structure-based
editing reduces the development times for creation and modification of graphical
models significantly compared to usual WYSIWYG Drag-and-Drop (DND) edit-
ing. The 30 subjects divided into three different categories: The class group was
familiar with the syntax of SyncCharts but not with modeling editors. The prac-
tical group took part in a practical course and had some experience already with
Eclipse GMF editors. The last group comprised developers of the KIELER team,
combining experiences with SyncCharts and the Eclipse SyncCharts editor.

9 http://www.eclipse.org/Xtext/

http://www.eclipse.org/Xtext/


GUI Framework

Editor Interface

Core Layer

Transformation Interface

Transformation Framework

S
tructur e B

ase
d 

E
diting F

ram
ew

o
rk

(K
S

B
as E

)

GMF Bridge

Xtend Bridge

Eclipse GMF

TMF Xtend

Principle Example

(a) Scope of KSBasE

Tabelle1

Seite 1

KIELER-Team
Manual 19:11 15:18 17:18
Auto-Layout 13:35 11:43 09:39

10:17 08:26 08:27

Extrahiert aus .../theses/mim-dt/eval

Class Practical

Structure-Based

Manual

Auto-Layout 

Structure-Based

00:00
02:00

04:00
06:00

08:00
10:00

12:00
14:00

16:00
18:00

20:00

Class

Practical

KIELER-Team

(b) Evaluation of different editing methods.

Fig. 9. KIELER Structure-Based Editing (KSBasE)

The task was to create three different SyncCharts, using a different input
method in random order for each: (1) standard Drag-and-Drop editing, (2) DND

editing with manually triggered automatic layout and (3) structure-based editing
as presented above. The models were provided in a comprehensible but formal
textual notation. The experiment and its outcome are described in detail else-
where [31], but Fig. 9b summarizes the results.

Editing with automatic layout decreased the necessary modeling times in
average by nearly 33%. Full KSBasE reduced the times by another 15% compared
to DND. From auto-layout to KSBasE the difference was mainly influenced by
the earlier experience, e. g., how well keyboard shortcuts could be employed.

The SyncCharts in the tasks were of rather simple structure, and only cre-
ation was required, no modifications. Hence, only rather plain transformations
in KSBasE were necessary to complete the tasks. More complex transformations
might result in even greater speedups.

7 Conclusions

Visual models help to understand complex systems. However, with current in-
teraction paradigms, activities such as creating or browsing visual models can
be very tedious. We presented an approach on enhancing the pragmatics of
model-based design—the way a user interacts with models. The concept of meta
layout enables the dynamic synthesis of different diagrammatic views on graph-
ical models. View management builds upon automatic layout to configure views
on models given a certain context in which the model is examined. An experi-
mental evaluation supports the claim that view management with auto-layout
helps to tame complexity in graphical modeling.

Additional modeling languages under investigation are the UML and actor-
oriented dataflow languages. Ongoing work is integration and development of
more layout algorithms to support more specialized graphical syntaxes and to
enhance the aesthetics of layout results. Optimal layout parameters should be



determined automatically by measuring aesthetics with metrics and evolution-
ary algorithms/machine learning. Another current goal is the adoption of a view
management language for formulating view management use cases and to estab-
lish view management as a “first-class citizen” in modeling.

References

1. Fuhrmann, H., von Hanxleden, R.: Taming graphical modeling. Technical Report
1003, Christian-Albrechts-Universität zu Kiel, Department of Computer Science
(May 2010)

2. Seffah, A., Gulliksen, J., Desmarais, M.C.: An introduction to human-centered
software engineering. In: Human-Centered Software Engineering—Integrating Us-
ability in the Software Development Lifecycle. Volume 8 of Human-Computer In-
teraction Series., Springer Netherlands (2005) 3–14

3. Brosch, P., Langer, P., Seidl, M., Wieland, K., Wimmer, M., Kappel, G., Rets-
chitzegger, W., Schwinger, W.: An example is worth a thousand words: Composite
operation modeling by-example. In: Model Driven Engineering Languages and Sys-
tems, (MoDELS’09). Volume 5795 of LNCS., Springer Berlin / Heidelberg (2009)

4. Sun, Y., White, J., Gray, J.: Model transformation by demonstration. In: Model
Driven Engineering Languages and Systems (MoDELS’09). Volume 5795 of LNCS.,
Springer Berlin / Heidelberg (2009) 712–726

5. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: Graphical
Definition of In-Place Transformations in the Eclipse Modeling Framework. In:
Model Driven Engineering Languages and Systems (MoDELS’06), LNCS. Volume
4199/2006., Springer Berlin/Heidelberg (2006) 425–439

6. Gulliksen, J., Göransson, B., Boivie, I., Persson, J., Blomkvist, S., Åsa Cajan-
der: Key principles for user-centred systems design. In: Human-Centered Software
Engineering—Integrating Usability in the Software Development Lifecycle. Vol-
ume 8 of Human-Computer Interaction Series., Springer Netherlands (2005) 17–36

7. Diehl, S.: Software Visualization: Visualizing the Structure, Behavior and Evolu-
tion of Software. Springer (2007)

8. Card, S.K., Mackinlay, J., Shneiderman, B.: Readings in Information Visualization:
Using Vision to Think. Morgan Kaufmann (January 1999)

9. Musial, B., Jacobs, T.: Application of focus + context to UML. In: APVis ’03: Pro-
ceedings of the Asia-Pacific symposium on Information visualisation, Darlinghurst,
Australia, Australia, Australian Computer Society, Inc. (2003) 75–80

10. Purchase, H.C.: Metrics for graph drawing aesthetics. Journal of Visual Languages
and Computing 13(5) (2002) 501–516

11. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall (1999)

12. Jünger, M., Mutzel, P.: Graph Drawing Software. Springer (October 2003)
13. Chimani, M., Gutwenger, C.: Algorithms for the hypergraph and the minor crossing

number problems. In: 18th International Symposium on Algorithms and Compu-
tation (ISAAC’07). Volume 4835 of LNCS., Springer (2007) 184–195

14. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Software—Practice and Experience 30(11) (2000)
1203–1234

15. Sander, G., Vasiliu, A.: The ILOG JViews graph layout module. In: GD 2001:
Proceedings of the 9th International Symposium on Graph Drawing. Volume 2265
of LNCS., Springer-Verlag (2002) 469–475



16. Demirezen, Z., Sun, Y., Gray, J., Jouault, F.: Supporting tool reuse with model
transformation. In: 18th International Conference on Software Engineering and
Data Engineering (SEDE’09), Las Vegas, USA, ISCA (June 2009) 119–125

17. Prochnow, S., von Hanxleden, R.: Statechart development beyond WYSIWYG. In:
Proceedings of the ACM/IEEE 10th International Conference on Model Driven En-
gineering Languages and Systems (MoDELS’07). Volume 4735 of LNCS., Nashville,
TN, USA (October 2007)

18. Morris, C.W.: Foundations of the theory of signs. Volume 1 of International ency-
clopedia of unified science. The University of Chicago Press, Chicago (1938)

19. Gurr, C.A.: Effective diagrammatic communication: Syntactic, semantic and prag-
matic issues. Journal of Visual Languages and Computing 10(4) (1999) 317–342

20. Haberland, H., Mey, J.L.: Editorial: Linguistics and pragmatics. Journal of Prag-
matics 1 (1977) 1–12

21. Atkinson, C., Kühne, T.: Model-driven development: A metamodeling foundation.
IEEE Software (2003) 36–41

22. Motika, C., Fuhrmann, H., von Hanxleden, R.: Semantics and execution of domain
specific models. Technical Report 0923, Christian-Albrechts-Universität Kiel, De-
partment of Computer Science (December 2009)

23. Fuhrmann, H., von Hanxleden, R.: On the pragmatics of model-based de-
sign. In: Foundations of Computer Software. Future Trends and Techniques for
Development—15th Monterey Workshop 2008, Budapest, Hungary, September 24–
26, 2008, Revised Selected Papers. Volume 6028 of LNCS. (2010)

24. Petre, M.: Why looking isn’t always seeing: Readership skills and graphical pro-
gramming. Communications of the ACM 38(6) (June 1995) 33–44

25. Object Management Group: Unified Modeling Language: Superstructure, version
2.0 (Aug 2005) http://www.omg.org/docs/formal/05-07-04.pdf.

26. Gutwenger, C., Jünger, M., Klein, K., Kupke, J., Leipert, S., Mutzel, P.: A new
approach for visualizing UML class diagrams. In: SoftVis ’03: Proceedings of the
2003 ACM Symposium on Software Visualization, New York, NY, USA, ACM
(2003) 179–188

27. Fuhrmann, H., Spönemann, M., Matzen, M., von Hanxleden, R.: Automatic layout
and structure-based editing of UML diagrams. In: Proceedings of the 1st Work-
shop on Model Based Engineering for Embedded Systems Design (M-BED 2010),
Dresden (March 2010)

28. Grundy, J., Hosking, J., Huh, J., Li, K.N.L.: Marama: an eclipse meta-toolset
for generating multi-view environments. In: ICSE’08: Proceedings of the 30th
international conference on software engineering, Leipzig, Germany, ACM (2008)
819–822

29. André, C.: SyncCharts: A visual representation of reactive behaviors. Technical
Report RR 95–52, rev. RR 96–56, I3S, Sophia-Antipolis, France (Rev. April 1996)

30. Fuhrmann, H., von Hanxleden, R.: Enhancing graphical model-based system
design—an avionics case study. In: Conjoint workshop of the European Research
Consortium for Informatics and Mathematics (ERCIM) and Dependable Embed-
ded Components and Systems (DECOS) at SAFECOMP’09, Hamburg, Germany
(September 2009)

31. Matzen, M.: A generic framework for structure-based editing of graphical mod-
els in Eclipse. Diploma thesis, Christian-Albrechts-Universität zu Kiel, Depart-
ment of Computer Science (March 2010) http://rtsys.informatik.uni-kiel.

de/~biblio/downloads/theses/mim-dt.pdf.

http://www.omg.org/docs/formal/05-07-04.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mim-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mim-dt.pdf

	Taming Graphical Modeling

